
Vectors and matrices 9
Summary: The elements of the STL can easily be used for constructing arrays or
vectors in which the access to elements is checked at run time to determine an index
overflow. Construction of matrices for different memory models is quite possible,
as is shown for C matrices (row-wise storage), FORTRAN matrices (column-wise
storage), and symmetric matrices. A class for sparse matrices is implemented by
means of an associative container.

The vectors and matrices of this chapter are for elements of an arbitrary type, i.e.
for complex class types as well as basic data types. If vectors and matrices are to
be used exclusively for numerical data types like double or complex, the standard
library class valarray could be considered (ISO/IEC (1998), Stroustrup (1997)).
valarray operations are optimized for speed, but (for exactly that reason) do no
bounds checks. Sparse matrices as described here cannot be realized with valarray
in a comparably simple way.

9.1 Checked vectors
The subscript operators of the vector templates of the STL do not carry out an index
check. The following example tries to access an invalid vector position:

vector<string> stringVec(4);

// ...

stringVec[0] = stringVec[34]; // Error!

Obviously this is a nonsensical assignment. If a program goes on working with
values generated by erroneous indices, the error is often detected only through
consequential errors and is therefore difficult to identify. It is, however, possible to
construct a new vector class named, for example, checkedVector, that carries out
an index check. This class is not part of the STL, but it builds on it.

The principle is straightforward: checkedVector is a vector which carries out
additional checks. In C++, the relation ‘is a’ is expressed through public inheritance.
The derived class must only provide the constructors of the base class and redefine
the index operator:



196 VECTORS AND MATRICES

// include/checkvec.h : vector class with checked limits
#ifndef CHECKVEC_H

#define CHECKVEC_H

#include<cassert>

#include<vector>

namespace br_stl {

template<class T>

class checkedVector : public std::vector<T> { // inherit
public:

// inherited types
typedef typename checkedVector::size_type size_type;

typedef typename checkedVector::iterator iterator;

typedef typename checkedVector::difference_type difference_type;

typedef typename checkedVector::reference reference;

typedef typename checkedVector::const_reference const_reference;

checkedVector() {

}

checkedVector(size_type n, const T& value = T())

: std::vector<T>(n, value) {

}

checkedVector(iterator i, iterator j)

: std::vector<T>(i, j) {

}

reference operator[](difference_type index) {

assert(index >=0

&& index < static_cast<difference_type>(this->size()));

return std::vector<T>::operator[](index);

}

const_reference operator[](difference_type index) const {

assert(index >=0

&& index < static_cast<difference_type>(this->size()));

return std::vector<T>::operator[](index);

}

};

}

#endif

Note: The STL allows inheritance, but does not support polymorphism! In this
sense, methods of derived classes may be called, but not via pointers or references of
the base class type. In the case of vectors, this is certainly no problem, but be awaretip
of it.



MATRICES AS NESTED CONTAINERS 197

difference_type is deliberately chosen as the argument type, so that neg-
ative erroneous index values are recognized as well. The type size_type would
lead to an int→ unsigned conversion, and a negative index would be recognized
only because it is converted into a significantly large number. Applying this template
generates error messages at run time, when the permitted index range is exceeded in
either direction. The index check can be switched off with the preprocessor instruc-
tion #define NDEBUG, if it is inserted before #include<cassert>. The following
program provokes a run time error by accessing a non-existent vector element:

// k9/a1/strvec.cpp
// string vector container with index check
#include<checkvec.h> // contains checkedVector
#include<iostream>

#include<string>

int main() {

// a string vector of 4 elements
br_stl::checkedVector<std::string> stringVec(4);

stringVec[0] = "first";

stringVec[1] = "second";

stringVec[2] = "third";

stringVec[3] = "fourth";

std::cout << "provoked program abort:" << std::endl;

stringVec[4] = "index error"; // error
}

Thus, the checkedVector class puts a so-called safety wrapper around the vec-
tor class. One interface, namely the access to elements of the vector, is adapted to the
safety requirements, which is why the checkedVector class can be called a kind
of ‘vector adaptor.’

9.2 Matrices as nested containers
Besides one-dimensional arrays, two- and three-dimensional matrices are widely
used in mathematical applications. Matrices can be build using the valarray class
of the C++ standard library and related classes. The implementation by means of
containers from the STL is also possible, as shown here. Mathematical matrices
are special cases of arrays of elements which are of the data types int, float,
complex, rational, or similar. The checkedVector class (Section 9.1) is a one-
dimensional matrix in this sense, with the difference that, unlike a normal C array,
the class allows safe access via the index operator, as we would also expect for two-
and more-dimensional matrix classes. Access to the elements of a one- or more-
dimensional matrix object should

• be safe by checking all indices, and

• be carried out via the index operator [] (or [][], [][][], ...), so that the usual
notation can be maintained.



198 VECTORS AND MATRICES

A possible alternative would be to overload the bracket operator for round paren-
theses (), which is shown in Section 9.3. It may be argued that it is more pleasing to
the eye to write M(1,17) instead of M[1][17]. When writing new programs, this is
really not important. But what if you are responsible for maintaining and servicing
existing large programs which use the [] syntax? A further argument is that a matrix
class should behave as similarly as possible to a conventional C array.

The first requirement is often dismissed, the decrease in efficiency being the
justification. This argument is not a hard and fast rule, for more than one reason:

• A correct program is more important than a fast one. As industry practice shows,
index errors occur quite frequently. Finding the source of the error is difficult when
calculation is continued with erroneous data and the error itself becomes evident
only through consequential errors.

• The increased run time caused by checked access is often comparable to further
operations relative to the array element, and is sometimes negligible. In the fields
of science and engineering, there are programs in which the index check is signif-
icantly disadvantageous; however, it depends on the specific case. Only if a pro-
gram is too slow because of the index check, might one consider, after thorough
testing, taking the index check out.

9.2.1 Two-dimensional matrices
What is a two-dimensional matrix whose elements are of type int? An int matrix
is a vector consisting of int vectors! This view allows a significantly more elegant
formulation of a matrix class in comparison to the assertion: ‘The matrix has or
consists of mathematical int vectors.’ The formulation of the is a relation as inheri-
tance shows the class Matrix. Again, it is not the standard vector container which is
employed, but the checkedVector class of page 195 derived from it, so that auto-
matic index checking is achieved. Only if no index check is required at all should
the checkedVector be replaced with the vector:

// k9/a2/matrix.h
#ifndef MATRIX_H

#define MATRIX_H

#include<checkvec.h> // checked vector of Section 9.1
#include<iostream> // for operator<<(), see below

/*matrix as vector of vectors
*/
template<class T>

class Matrix : public br_stl::checkedVector<

br_stl::checkedVector<T> > {

public:

typedef typename std::vector<T>::size_type size_type;

Matrix(size_type x = 0, size_type y = 0)



MATRICES AS NESTED CONTAINERS 199

: br_stl::checkedVector< br_stl::checkedVector<T> >(x,

br_stl::checkedVector<T>(y)), rows(x), columns(y) {

}

/*Thus, the Matrix class inherits from the checkedVector class, with the data
type of the vector elements now being described by a checkedVector<T>
template. With this, the matrix is a nested container that exploits the combina-
tion of templates with inheritance.

The constructor initializes the implicit subobject of the base class type
(checkedVector< checkedVector<T> >) with the correct size x.

Exactly as with the standard vector container, the second parameter of the con-
structor specifies with which value each vector element is to be initialized. Here,
the value is no more than a vector of type checkedVector<T> and length y.

Some simple methods follow for returning the number of rows and columns, ini-
tializing all matrix elements with a given value (init()), and generation of the
identity matrix (I()), in which all diagonal elements = 1 and all other elements
= 0. For comparison: init() does not return anything and I() returns a refer-
ence to the matrix object, so that the latter method allows chaining of operations:

*/

size_type Rows() const {return rows; }

size_type Columns() const {return columns; }

void init(const T& Value) {

for (size_type i = 0; i < rows; ++i)

for (size_type j = 0; j < columns ; ++j)

operator[](i)[j] = Value; // that is, (*this)[i][j]
}

/*The index operator operator[]() is inherited from checkedVector. Ap-
plied to i, it supplies a reference to the ith element of the (base class subobject)
vector. This element is itself a vector of type checkedVector<T>. It is again
applied to the index operator, this time with the value j, which returns a refer-
ence to an object of type T, which is then assigned the value.

*/

// create identity matrix
Matrix<T>& I() {

for (size_type i = 0; i < rows; ++i)

for (size_type j = 0; j < columns ; ++j)

operator[](i)[j] = (i==j) ? T(1) : T(0);

return *this;

}

protected:

size_type rows,

columns;

// here, mathematical operators could follow ...



200 VECTORS AND MATRICES

}; // class Matrix
#endif

Further mathematical operations are omitted, because the point is not to describe
a voluminous matrix class, but to show the flexible and varied way in which elements
of the STL can be used for the construction of new data structures. In light of this,
it is not easy to understand why the C++ standardization committee has chosen a
numeric library which is not based on the STL, but is no easier to handle. Matrix
has no dynamic data outside the base class subobject. Therefore, no special destruc-
tor, copy constructor, or an own assignment operator is needed. The corresponding
operations of the base class subobject are carried out by the checkedVector class
or its superclass vector.

To facilitate the output of a matrix, we can quickly formulate an output operator
which displays a matrix together with its row numbers:

template<class T>

inline std::ostream& operator<<(std::ostream& s,

const Matrix<T>& m ) {

typedef typename Matrix<T>::size_type size_type;

for (size_type i = 0; i < m.Rows(); ++i) {

s << std::endl << i <<" : ";

for (size_type j = 0; j < m.Columns(); ++j)

s << m[i][j] <<" ";

}

s << std::endl;

return s;

}

#endif // file matrix.h

Further operations and functions can be built following this scheme. Some
sample applications show that applying the matrix class is extremely simple (see
k9/a2/matmain.cpp):

Matrix<float> a(3,4);

a.init(1.0); // set all elements = 1
cout << " Matrix a:\n" << a;

The output of this simple program part is

Matrix a:
0 : 1 1 1 1
1 : 1 1 1 1
2 : 1 1 1 1

Chaining of operations by returning the reference to the object is shown in the
line

cout << "\n Identity matrix:\n" << a.I();



MATRICES AS NESTED CONTAINERS 201

where a.I() returns the matrix object so that template<class T> ostream&

operator<<(ostream& s, const Matrix<T>& m) can be called. As with a
simple C array, the index operator can be chained, but with the advantage that the
index is checked for limits:

Matrix<float> b(4,5);

for(int i=0; i< b.Rows(); ++i)

for(int j=0; j< b.Columns(); ++j)

b[i][j] = 1+i+(j+1)/10.; // index operator
cout << "\n Matrix b:\n" << b;

Output:

Matrix b:
0 : 1.1 1.2 1.3 1.4 1.5
1 : 2.1 2.2 2.3 2.4 2.5
2 : 3.1 3.2 3.3 3.4 3.5
3 : 4.1 4.2 4.3 4.4 4.5

Owing to the check in operator[](), an assignment of the kind b[100][99]

= 1.0 leads to the erroneous program being aborted. Now, how do element access
and index check work? Let us consider the following example:

b[3][2] = 1.0;

Access is very simple; both indices are checked. Explaining how it works, how-
ever, is not that easy. In order to see what happens, we now rewrite b[3][2] and
resolve the function calls:

(b.checkedVector<checkedVector<float> >

::operator[](3)).operator[](2)

The anonymous base class subobject is a checkedVector whose [] operator is
called with the argument ‘3.’ The elements of the vector are of type checkedVector
<float>; that is, a reference to the third checkedVector<float> of the base class
subobject is returned. If, for simplicity, we call the return value X, then

X.operator[](2)

is executed, which means no more than executing the index operation operator[]()
for a checkedVector<float> with the result float&, that is, a reference to the
sought element. In each of these index operator calls, the limits are checked in a
uniform way. Apart from the equivalent definition for constant objects, there exists tip
only one definition of the index operator!

9.2.2 Three-dimensional matrix
The scheme used for two-dimensional matrices can now easily be extended for ma-
trices of arbitrary dimensions. Here, as a conclusion, an example for three dimen-
sions is given. What is a three-dimensional matrix whose elements are of type int?



202 VECTORS AND MATRICES

The question can easily be answered in analogy to the previous section. A three-
dimensional int matrix is a vector of two-dimensional int matrices! The formu-
lation of the is a relation as inheritance is shown by the Matrix3D class:

// k9/a2/matrix3d.h 3D matrix as vector of 2D matrices
#ifndef MATRIX3D_H

#define MATRIX3D_H

#include"matrix.h"

template<class T>

class Matrix3D : public br_stl::checkedVector<Matrix<T> > {

public:

typedef typename std::vector<T>::size_type size_type;

Matrix3D(size_type x = 0, size_type y = 0,

size_type z = 0)

: br_stl::checkedVector<Matrix<T> >(x, Matrix<T>(y,z)),

rows(x), columns(y), zDim(z) {

}

/*The constructor initializes the base class subobject, a checkedVector of length
x, whose elements are matrices. Each element of this vector is initialized with a
(y,z) matrix.

*/

size_type Rows() const { return rows;}

size_type Columns() const { return columns;}

size_type zDIM() const { return zDim;}

/*The other methods resemble those of the Matrix class. The init() method
needs only one loop over the outermost dimension of the three-dimensional
matrix, because operator[](i) is of type &Matrix<T> and therefore
Matrix::init() is called for each two-dimensional submatrix:

*/

void init(const T& Value) {

for (size_type i = 0; i < rows; ++i)

operator[](i).init(Value);

}

protected:

size_type rows,

columns,

zDim; // 3rd dimension
// here, mathematical operators could follow ...

};

#endif

Since, like Matrix, Matrix3D has no dynamic data outside the base class
subobject, no special destructor, copy constructor, or own assignment operator is
needed. The corresponding operations for the base class subobject are carried out by



MATRICES AS NESTED CONTAINERS 203

the checkedVector class itself. The index operator is inherited. Three-dimensional
matrices can be defined and used in a simple way, for example:

// Excerpt from k9/a2/matmain.cpp
#include"matrix3d.h"

int main() {

Matrix3D<float> M3(2,4,5);

for (i=0; i< M3.Rows(); ++i)

for (int j=0; j< M3.Columns(); ++j)

for (int k=0; k< M3.zDIM(); k++)

// chained index operator on the left hand side
M3[i][j][k] = 10*(i+1)+(j+1)+(k+1)/10.;

std::cout << "\n 3D matrix:\n";

for (i=0; i< M3.Rows(); ++i)

std::cout << "Submatrix " << i

<< ":\n"

<< M3[i];

// ... and so on

Since for M3[i], as with a two-dimensional matrix, the output operator is already
defined, the output only needs one loop level. The result is:

3D matrix:
Submatrix 0:
0 : 11.1 11.2 11.3 11.4 11.5
1 : 12.1 12.2 12.3 12.4 12.5
2 : 13.1 13.2 13.3 13.4 13.5
3 : 14.1 14.2 14.3 14.4 14.5

Submatrix 1:
0 : 21.1 21.2 21.3 21.4 21.5
1 : 22.1 22.2 22.3 22.4 22.5
2 : 23.1 23.2 23.3 23.4 23.5
3 : 24.1 24.2 24.3 24.4 24.5

An index error can easily be provoked and is ‘rewarded’ with program abortion,
no matter in which of the three dimensions the error occurs. The functioning of the
index operator can be described analogous to the Matrix class, but there is one more
chained operator call. Let us, for example, reformulate an access M[1][2][3]:

M.checkedVector<Matrix<float> >::

operator[](1).operator[](2).operator[](3)

The first operator returns something of type Matrix<float>& or, more pre-
cisely, a reference to the first element of the checkedVector subobject of M. For
readability, we now abbreviate the returned ‘something’ with Z and obtain



204 VECTORS AND MATRICES

Z.operator[](2).operator[](3)

We know that a reference is only another name (an alias), so that, in the
end, Z represents a matrix of type Matrix<float>. We have already seen that a
Matrix<float> is a vector of type checkedVector<checkedVector<float>

>, from which operator[]() was inherited. This operator is now called with the
argument ‘2’ and returns a result of type checkedVector<float>& which, for
brevity, will be called ‘X’:

X.operator[](3)

The rest is easy when we think back to the end of Section 9.2.1. Here too, as with
the Matrix class, access to an element is simpler than the underlying structure.

9.2.3 Generalization
The method for construction of classes for multi-dimensional matrices can easily
be generalized: an n-dimensional matrix can always be considered as a vector of
(n − 1)-dimensional matrices, the existence of a class for (n − 1)-dimensional ma-
trices is assumed. In practice, however, four- and higher-dimensional matrices are
seldom employed. The index operator, assignment operator, copy constructor, and
destructor do not have to be written, they are provided by the vector class; whereas
the constructor, the initialization methods, and the required mathematical operators
still have to be written.

9.3 Matrices for different memory
models
This section will show how matrices for different memory layouts can easily be im-
plemented by means of the STL programming methodology. Here, for a change, the
index operator is realized with round parentheses, that is, by overlaying the function
operator operator()(), because otherwise, an auxiliary class would be needed.

Different memory models can play a role when matrices from or in FORTRAN
programs are to be processed, for example when FORTRAN matrix subroutines are
called from within a C++ program. The matrices of the previous section are vectors
which, depending on the allocator, are not necessarily stored in memory one after
the other. Each matrix of this section is, however, mapped to a linear address space,
the reason for which a vector container is chosen as a basis. This address space shall
be of fixed, unchangeable size, which is expressed by the name fixMatrix for the
matrix class.

The position of a matrix element X[i][j] inside the vector container depends,
however, on the kind of storage. Three cases will be discussed:

• C memory layout
Storage occurs row-wise, that is, row 0 lies at the beginning of the container. It



MATRICES FOR DIFFERENT MEMORY MODELS 205

is followed by row 1, and so on. The linear order of the nine elements Mij of a
matrix M with three rows and three columns is as follows:

M00, M01, M02, M10, M11, M12, M20, M21, M22

• FORTRAN memory layout
In the FORTRAN programming language, storage occurs column-wise. Column
0 lies at the beginning of the container, followed by column 1, and so on. The
linear order of the nine elements of a matrix with three rows and three columns is
therefore:

M00, M10, M20, M01, M11, M21, M02, M12, M22

• Memory layout for symmetric matrices
A symmetric matrix M satisfies the condition M = MT. The raised T stands for
‘transposed matrix’ and means that Mij = Mji holds for all elements. It follows
that a symmetric matrix is quadratic, that is, it has as many rows as columns.
Furthermore, it follows that by exploiting the symmetry, one needs only slightly
more than half the memory, compared with an arbitrary square matrix. For exam-
ple, for a symmetric matrix with three rows and three columns, it is sufficient to
store the following six instead of nine elements:

M00, M01, M11, M02, M12, M22

An element M10 must be searched for at position 1 of the container, where the
associated element M01 is located.

To implement all three possibilities in a flexible way using the STL, a class
fixMatrix is defined which provides the most important methods of a matrix,
namely the constructor and methods for determining number of rows and columns,
together with an operator for accessing individual elements, implemented here by
means of the overloaded function operator:

// excerpt from k9/a3/matrices.h
template<class MatrixType>

class fixMatrix {

public:

typedef typename MatrixType::ValueType ValueType;

typedef typename MatrixType::IndexType IndexType;

typedef typename MatrixType::ContainerType ContainerType;

fixMatrix(IndexType z, IndexType s)

: theMatrix(z,s,C), C(theMatrix.howmany()) {

}

IndexType Rows() const { return theMatrix.Rows();}

IndexType Columns() const { return theMatrix.Columns();}



206 VECTORS AND MATRICES

ValueType& operator()(IndexType z, IndexType s) {

return theMatrix.where(z,s);

}

// ... further methods and operators

private:

MatrixType theMatrix; // determines memory layout
ContainerType C; // container C

};

The kind of data storage is undefined; it is determined by the placeholder
MatrixType which is supposed to supply the required properties. The requirements
for MatrixType result from fixMatrix:

• Data types must be provided for the container, the elements to be stored, and the
data type of the index.

• The method howmany() is used to determine the size of the container.

• The method where(), when applied to the object which determines the matrix
type, returns a reference to the sought element.

• Rows() and Columns() methods return the corresponding number.

What is still needed is a proper formulation of the matrix types for the above-
mentioned possibilities of element order. Properties common to all three types are
formulated as a superclass which is parametrized with the value and index types. In
this superclass, the container type is defined as vector.

#include<cassert> // used in subclasses
#include<vector>

template<class ValueType, class IndexType>

class MatrixSuperClass {

public:

// public type definitions
typedef ValueType ValueType;

typedef IndexType IndexType;

// define vector as container type:
typedef vector<ValueType> ContainerType;

IndexType Rows() const { return rows;}

IndexType Columns() const { return columns;}

protected:

MatrixSuperClass(IndexType z, IndexType s,

ContainerType& Cont)

: rows(z), columns(s), C(Cont) {

}



MATRICES FOR DIFFERENT MEMORY MODELS 207

ContainerType &C;

private:

IndexType rows, columns;

};

Because of the protected constructor, MatrixSuperClass is an abstract
class. Outside the derived class, no single object of type MatrixSuperClass

can be instantiated. With the same result, one could have declared the functions
howmany() and where() common to all as purely virtual methods. The resulting
advantage of a compulsory definition of an interface for all derived classes would,
however, be overcome by the cost of an internal management table for virtual func-
tions. This is the reason why this alternative is not implemented. Furthermore, it is
neither usual nor necessary to access matrices via superclass pointers or references.
See also the hint on page 196.

The reference to the container which is physically located in the fixMatrix

class allows derived classes to access it. The following sections present the outstand-
ing peculiarities.

9.3.1 C memory layout
In the following, r stands for ‘row’ and c for ‘column.’ CMatrix inherits, as de-
scribed, from MatrixSuperClass.

template<class ValueType, class IndexType>

class CMatrix : public MatrixSuperClass<ValueType,IndexType>

{

public:

CMatrix(IndexType r, IndexType c,

typename CMatrix::ContainerType& C) // inherited type
: MatrixSuperClass<ValueType,IndexType>(r,c,C) {

}

// The size of the vector can easily be calculated:
IndexType howmany() const {

return this->Rows()*this->Columns();

}

/*The position of an element with the indices r and c is calculated in the where()
method. Checking of index limits in the vector container is only possible to a limited
extent, because the check could only be carried out against the entire length (Rows
× Columns). Therefore, a checkedVector is not sufficient, and the index check
is carried out directly inside the where() method.

*/

ValueType& where(IndexType r, IndexType c) const {

assert(r < this->Rows() && c < this->Columns());

return this->C[r * this->Columns() + c];



208 VECTORS AND MATRICES

}

}; // CMatrix

A simple program shows the application in which the fixMatrix class is
parametrized with a CMatrix that, for example, assumes values of type float and
an index type int.

// Excerpt from k9/a3/divmat.cpp
int main() {

fixMatrix<CMatrix<float,int> > MC(5,7);

cout << " CMatrix " << endl;

// fill rectangle
for(int i = 0; i < MC.Rows(); ++i)

for(int j = 0; j < MC.Columns(); ++j)

// application of operator()():
MC(i,j) = i + float(j/100.);

// display rectangle
for(int i = 0; i < MC.Rows(); ++i) {

for(int j = 0; j < MC.Columns(); ++j)

cout << MC(i,j) << ’ ’;

cout << endl;

}

// ... (main() continued)

9.3.2 FORTRAN memory layout
The class for FORTRAN memory layout differs only by the kind of address calcula-
tion:

template<class ValueType, class IndexType>

class FortranMatrix : public MatrixSuperClass<ValueType,

IndexType> {

public:

FortranMatrix(IndexType r, IndexType c,

typename FortranMatrix::ContainerType& C)

: MatrixSuperClass<ValueType, IndexType>(r,c,C) {

}

IndexType howmany() const {

return this->Rows()*this->Columns();

}

/*In the address calculation, rows and columns are exchanged in contrast to the
CMatrix class:

*/

ValueType& where(IndexType r, IndexType c) const {



MATRICES FOR DIFFERENT MEMORY MODELS 209

assert(r < this->Rows() && c < this->Columns());

return this->C[c * this->Rows() + r];

}

};

A simple example shows the application:

fixMatrix<FortranMatrix<float, int> > MF(5,7);

// and so on, as above in the C matrix layout

9.3.3 Memory layout for symmetric matrices
There are several differences between this and the two previous classes: the con-
structor checks equality of numbers of rows and columns; the address and memory
requirement calculations also differ.

template<class ValueType, class IndexType>

class symmMatrix

: public MatrixSuperClass<ValueType, IndexType> {

public:

symmMatrix(IndexType r, IndexType c,

typename symmMatrix::ContainerType& C)

: MatrixSuperClass<ValueType, IndexType>(r,c,C) {

assert(r == c); // matrix must be quadratic
}

// reduced memory consumption thanks to symmetry
IndexType howmany() const {

return this->Rows()*(this->Rows()+1)/2;

}

// the symmetry is exploited
ValueType& where(IndexType r, IndexType c) const {

assert(r < this->Rows() && c < this->Columns());

if (r <= c) return this->C[r + c*(c+1)/2];

else return this->C[c + r*(r+1)/2];

}

};

In the example, only one half-triangle of the matrix, including the diagonal, is
equipped with values; nothing further is provided by the available memory. The
subsequent display shows the complete matrix as a square where, obviously, the
elements mirrored at the diagonal are equal.

// Example of a symmetric matrix, excerpt from k9/a3/divmat.cpp
fixMatrix<symmMatrix<float, int> > MD(5,5);

cout << "\n symmMatrix " << endl;

// fill triangle
for(int i = 0; i < MD.Rows(); ++i)



210 VECTORS AND MATRICES

for(int j = i; j < MD.Columns(); ++j)

MD(i,j) = i + float(j/100.);

// output square
for(int i = 0; i < MD.Rows(); ++i) {

for(int j = 0; j < MD.Columns(); ++j)

cout << MD(i,j) << ’ ’;

cout << endl;

}

9.4 Sparse matrices
A sparse matrix is one whose elements are nearly all zero. Sparse matrices find their
application in simulation calculations of large networks in which mainly neighbor-
ing nodes are connected to each other. Examples include road networks, local and
worldwide computer networks, telephone networks, compound systems for supply-
ing the population with electricity, gas, and water, and many more. A characteristic
feature of all these networks is their large number of nodes.

A matrix M may, for example, represent a road network in which the element
Mij contains the distance in kilometers between town i and town j. By convention,
a value Mij = 0, (i 6= j) shall mean that no direct connection between towns i
and j exists. A direct connection in this sense is a connection that connects exactly
two towns. A road that touches several towns is therefore not considered as a direct
connection between starting point and end point, but as a compound connection
composed of direct connections. When one-way roads or direction-dependent routes
play a role, Mij 6= Mji may hold, so that M is not necessarily symmetric.

The fact that towns are directly connected with neighboring towns, but that there
are barely any direct connections between distant towns, leads to the effect that the
elements near the matrix diagonal are mostly not equal to 0. The ratio of the number
of elements not equal to 0 and the total number of elements in the matrix is called the
occupation rate. The occupation rate of a high-voltage network for energy supply, for
example, is approximately 5±2

N , where N is the number of network nodes and N2

the number of matrix elements.

Network nodes Matrix elements of which 6= 0 Occupation rate in %
100 10 000 500 5

1 000 1 000 000 5 000 0.5
10 000 100 000 000 50 000 0.05

Table 9.1: Typical occupation rate in sparse matrices.

With 100 nodes, the matrix would have 10 000 elements, of which only about
500 would be not equal 0 (= 5%). Table 9.1 gives an idea of the dependency of the
occupation rate on the number of nodes. It is obvious that it would be a waste of
main and mass storage to store all the zeros. Therefore, typically only the non-zero
elements are stored, together with an index pair (i, j) for identification.



SPARSE MATRICES 211

Which abstract data type is best suited for storage of a sparse matrix? Imagine a
column as a map which via a long index returns a double value. A matrix could
then be a map which via a long index returns a row. Thus, a sparse matrix of double
elements could be described quite simply as:

// k9/a4/sparse1.cpp
#include<map>

#include<iostream>

using namespace std;

// matrix declaration
typedef map<long, double> doubleRow;

typedef map<long, doubleRow> SparseMatrix;

/*The first index operator applied to a SparseMatrix returns a row on which the second
index operator is applied, as shown in the program:

*/

int main() {

SparseMatrix M; // see declaration above
M[1][1] = 1.0;

M[1000000][1000000] = 123456.7890;

cout.setf(ios::fixed);

cout.precision(6);

cout << M[1][1] << endl; // 1.000000
cout << M[1000000][1000000] << endl; // 123456.789000
cout << "M.size() :" << M.size() << endl; // 2

/*Unfortunately, this very simple form of a sparse matrix has a couple of ‘minor
blemishes.’ Access to a not yet defined element creates a new one:

*/

cout << M[0][0] << endl;

cout << "M.size() :" << M.size() << endl; // 3

/*This is not desirable, since the point is saving storage space. The next flaw is the
uncontrolled access to unwanted positions, once again with the effect of generating
additional elements:

*/

cout << M[-1][0] << endl; // index error
cout << "M.size() :" << M.size() << endl; // 4

}

The maximum index cannot be defined anyway, because it is given by the number
range of long. It would, however, be desirable to have a matrix which did not have
these properties and which ensured that elements of value 0 did not contribute to
memory consumption. Therefore, a different approach is presented which, however,
requires more effort.

Here, access to the elements is carried out in a matrix via a pair of indices – row
and column. Thus, an index pair constitutes the key for which the value of the matrix



212 VECTORS AND MATRICES

element is sought. This is a typical application of an associative container; thus, the
classes map of the STL and HMap of Chapter 7 would be suitable, but in a different
way than described above.

The following solution works with both kinds of map container, controlled by a
compiler switch, but the second container is faster. Obviously, accessing an element
of an associative container is slower when compared to a simple C array. This is the
price that has to be paid for being able, for example, to represent a 1 000 000 000 ×
1 000 000 000 matrix on a small PC and calculate with it, provided that the occupa-
tion rate is very, very small.

An example of the usage of a sparse matrix is shown in the following program
segment in which a matrix with ten million rows and columns, that is, 1014 (fic-
titious) elements is defined. Control of whether the underlying container is to be
taken from the STL is exercised by the switch STL_map which takes effect in the file
sparmat.h. If the line is commented out using //, the HMap container of Chapter 7 is
used.

// k9/a4/main.cpp
#include<iostream>

// #define STL_map

#include"sparmat.h" // class sparseMatrix, see below
using namespace std;

// example of a very big sparse matrix
int main() {

// ValueType double, IndexType long
sparseMatrix<double, long> M(10000000,10000000);

// Documentation
cout << "matrix with "

<< M.rows() // 10000000
<< " rows and "

<< M.columns() // 10000000
<< " columns" << endl;

// occupy some elements
M[999998][777777] = 999998.7777770;

M[1][8035354] = 123456789.33970;

M[1002336][0] = 444444444.1111;

M[5000000][4900123] = 0.00000027251;

// display of two elements
cout.setf(ios::fixed|ios::showpoint);

cout.precision(8);

cout << "M[1002336][0] = "

<< M[1002336][0] << endl;

cout << "M[5000000][4900123] = "

<< M[5000000][4900123] << endl;



SPARSE MATRICES 213

The output is

M[1002336][0] = 444444444.11110002
M[5000000][4900123] = 0.00000027

The small deviations with respect to the above assignments result from format-
ting with precision(8). Besides row and column number, it is also possible to
output the number of non-zero elements:

cout << "Number of non-zero elements = "

<< M.size() << endl;

cout << "max. number of non-zero elements = "

<< M.max_size() << endl;

To satisfy the need to output all non-zero elements of the sparse matrix for dis-
play or storage, the sparseMatrix class should provide forward iterators:

cout << "Output all non-zero elements via iterators\n";

sparseMatrix<double, long>::iterator temp = M.begin();

while(temp != M.end()) {

cout << "M[" << M.Index1(temp) // i
<< "][" << M.Index2(temp) // j
<< "] = " << M.Value(temp) // value
<< endl;

++temp;

}

// ...

The above lines lead to the following display

Output all non-zero elements via iterators
M[1][8035354] = 123456789.33970000
M[5000000][4900123] = 0.00000027
M[1002336][0] = 444444444.11110002

...

The output is only ordered when the map container of the STL is chosen. In the
above example, this is obviously not the case.

9.4.1 Index operator and assignment
Because of the selective storage of matrix elements, some peculiarities must be
considered during the design, particularly of the index and assignment operators.
A matrix element can stand both on the left-hand and on the right-hand side of an
assignment. In both cases, it must be taken into account that the element might not
yet exist in the container, that is, if it has not yet been assigned a value not equal
to zero. Three cases must be distinguished (the matrix elements are to be of type
double):



214 VECTORS AND MATRICES

1. Matrix element as lvalue: M[i][j] = 1.3;

In order to analyze it, the instruction must be broken down into its function parts:

sparseMatrix::operator[](i).operator[](j).operator=(1.3);

The first index operator checks the line index i for maintaining the limits, the sec-
ond operator checks the column index j. Furthermore, the second index operator
must supply an object that possesses an assignment operator to enter a double

value into the associative container together with the indices. This object must
have available all necessary information. When the double value is zero, how-
ever, no entry is to be made, but the element M[i][j] is to be deleted, provided
it already exists.

As usual in C++, some auxiliary classes are invented for the solution of this prob-
lem. The first class, named Aux, is the return type of the first index operator. The
second index operator, which checks the column number, is the index operator of
the Aux class. It returns an object of type MatrixElement, the second auxiliary
class. The assignment operator of this object caters for the rest, as illustrated by
the following lines:

sparseMatrix::operator[](i)︸ ︷︷ ︸.operator[](j).operator=(1.3);
Aux::operator[](j)︸ ︷︷ ︸.operator=(1.3);

MatrixElement::operator=(1.3);

On the surface, this highly flexible method of proceeding may seem costly. How-
ever, this cost must be compared with the insertion and search processes of the
underlying container; then, the balance looks significantly better. Substituting the
usual index operator operator[]() with the function operator operator()()
brings no advantage.

2. Matrix element as rvalue: double x = M[i][j];

In addition, the MatrixElement class needs an operator which converts an ob-
ject of type MatrixElement into the appropriate value type, in this case double.

3. Matrix element on both sides: M1[n][m] = M2[i][j];, where M1 and M2 may
be identical.
The MatrixElement class needs a second assignment operator with the argu-
ment const MatrixElement&.

9.4.2 Hash function for index pairs
In this section, the file sparmat.h is presented which contains the classes and auxil-
iary classes discussed above. It is included via #include into a program which is
designed to work with sparse matrices (see example on page 212). The file begins
with some preprocessor directives for determining the underlying implementation.



SPARSE MATRICES 215

// File k9/a4/sparmat.h, templates for sparse matrices
#ifndef SPARSEMATRIX_H

#define SPARSEMATRIX_H

// selection of implementation
#ifdef STL_map // defined in main()
#include<map>

#include<cassert>

#else

#include"hmap.h"

/*If at this point the HMap container of Chapter 7 is chosen, a function for calculating the
hash table addresses is needed. As opposed to the hash functions described up to now,
not just one value, but two are used for the calculation. Therefore, the function operator
of the PairHashFun class takes a pair as argument. The address calculation itself is
simple, but sufficient for the examples in this book.

*/

template<class IndexType> // int, long or unsigned
class PairHashFun {

public:

PairHashFun(long prime=65537)

// Another prime number is possible.
// for example, 2111 for smaller matrices.
: tabSize(prime) {

}

// Address calculation with two values
long operator()(

const std::pair<IndexType, IndexType>& p) const {

return (p.first + p.second) % tabSize;

}

long tableSize() const { return tabSize;}

private:

long tabSize;

};

#endif // STL_map or not

9.4.3 Class MatrixElement
An element stored in a container has a determined type denoted in the STL by
value_type. In this case, the value_type is a pair consisting of the key and the
associated value, where the key itself is a pair of two indices. In the class described
below, a pair of indices is defined as type IndexPair.

template<class ValueType, class IndexType,

class ContainerType>



216 VECTORS AND MATRICES

class MatrixElement {

private:

ContainerType& C;

typename ContainerType::iterator I;

IndexType row, column;

public:

typedef std::pair<IndexType, IndexType> IndexPair;

typedef MatrixElement<ValueType, IndexType,

ContainerType>& Reference;

/*The constructor initializes the private variables with all information that is needed.
(Normally, the private objects are placed at the end of a class definition. For rea-
sons of contextual consistency, this rule is sometimes not observed.) The container
itself is located in the sparseMatrix class; here, the reference to it is entered.
If the passed indices for row and column belong to an element not yet stored in
the container, the iterator has the value C.end().

*/

MatrixElement(ContainerType& Cont,

IndexType r, IndexType c)

: C(Cont), I(C.find(IndexPair(r,c))),

row(r), column(c) {

}

ValueType asValue() const {

if(I == C.end())

return ValueType(0);

else

return (*I).second;

}

operator ValueType () const {// type conversion operator
return asValue();

}

/*According to the definition of the sparse matrix, 0 is returned if the element is not
present in the container. Otherwise, the result is the second part of the object of
type value_type stored in the container. The type conversion operator fulfils
the requirements of point 2 on page 214. The assignment operator (see point 1 on
page 214) is structured in a slightly more complicated way.

*/

Reference operator=(const ValueType& x) {

if(x != ValueType(0)) { // not equal to 0?

/*If the element does not yet exist, it is put, together with the indices, into
an object of type value_type and inserted with insert():

*/
if(I == C.end()) {



SPARSE MATRICES 217

assert(C.size() < C.max_size());

I = (C.insert(typename ContainerType

::value_type(IndexPair(row,column), x))

).first;

}

else (*I).second = x;

}

/*insert() returns a pair whose first part is an iterator pointing to the in-
serted object. The second part is of type bool and indicates whether the in-
sertion took place because no element with this key existed. This is, however,
not evaluated here because, due to the precondition (I == C.end()), the
second part must always have the value true. If, instead, the element already
exists, the value is entered into the second part of the value_type object.

If the value is equal to 0, then to save space the element is deleted if it existed.
*/
else // x = 0

if(I != C.end()) {

C.erase(I);

I = C.end();

}

return *this;

}

/*Point 3 on page 214 requires an assignment operator which in turn requires a
reference to an object of type MatrixElement. When both the left- and right-
hand sides are identical, nothing has to happen. Otherwise, as above, it has to be
checked whether the value of the right-hand element is 0 or not. The resulting
behavior is described together with the above assignment operator, so that here it
is simply called:

*/

Reference operator=(const Reference rhs) {

if(this != &rhs) { // not identical?
return operator=(rhs.asValue()); // see above

}

return *this;

}

}; // class MatrixElement

9.4.4 Class sparseMatrix
Depending on the selected implementation, the data types for the container and other
aspects are set:

template<class ValueType, class IndexType>

class sparseMatrix {

public:



218 VECTORS AND MATRICES

typedef std::pair<IndexType, IndexType> IndexPair;

// The switch STL_map controls the compilation:

#ifdef STL_map

typedef std::map<IndexPair, ValueType,

std::less<IndexPair> > ContainerType;

#else

typedef br_stl::HMap<IndexPair, ValueType,

PairHashFun<IndexType> > ContainerType;

#endif

typedef MatrixElement<ValueType, IndexType,

ContainerType> MatrixElement;

public:

typedef IndexType size_type;

/*The constructor initializes only the row and column information. The container is
created by its default constructor, where in the case of hash implementation, the
size of the container is given by the hash function object of type PairHashFun
(see typedef above).

*/

private:

size_type rows_, columns_;

ContainerType C;

public:

sparseMatrix(size_type r, size_type c)

: rows_(r), columns_(c) {

}

/*The following list of methods, besides determining the number of rows and
columns, provides the common container methods, which are not discussed in
detail.

*/

size_type rows() const { return rows_;}

size_type columns() const { return columns_;}

// usual container type definitions
typedef typename ContainerType::iterator iterator;

typedef typename ContainerType::const_iterator

const_iterator;

// usual container functions
size_type size() const { return C.size();}

size_type max_size() const { return C.max_size();}



SPARSE MATRICES 219

iterator begin() { return C.begin();}

iterator end() { return C.end();}

const_iterator begin() const { return C.begin();}

const_iterator end() const { return C.end();}

void clear() { C.clear();}

class Aux {

public:

Aux(size_type r, size_type maxs, ContainerType& Cont)

: Row(r), maxColumns(maxs), C(Cont) {

}

/*After checking the number of columns, the index operator of Aux returns a
matrix element which is equipped with all the necessary information to carry
out a successful assignment.

*/

MatrixElement operator[](size_type c) {

assert(c >= 0 && c < maxColumns);

return MatrixElement(C, Row, c);

}

private:

size_type Row, maxColumns;

ContainerType& C;

};

/*The index operator of the sparseMatrix class returns the auxiliary object de-
scribed on page 214, whose class is defined as nested inside sparseMatrix.

*/

Aux operator[](size_type r) {

assert(r >= 0 && r < rows());

return Aux(r, columns(), C);

}

/*Up to this point, from a functionality point of view, the sparseMatrix
class is sufficiently equipped. However, to avoid writing such horrible things as
‘(*I).first.first’ for accessing the elements, some of the following auxil-
iary functions determine the indices and associated values of an iterator in a more
readable way. Their application can be seen in the example on page 213.

*/

size_type Index1(const_iterator& I) const {

return (*I).first.first;

}

size_type Index2(const_iterator& I) const {

return (*I).first.second;

}



220 VECTORS AND MATRICES

ValueType Value(const_iterator& I) const {

return (*I).second;

}

}; // class sparseMatrix
#endif // file sparmat

From the point of view of the information needed in the auxiliary functions, it
is not necessary to formulate these functions as member functions. It would also be
possible to create template functions which are not members. These, however, would
need an extra parameter to determine the type of the index or the values, thus the first
way is followed.

9.4.5 Run time measurements
Owing to its more complicated storage, access to an element of a sparse matrix takes
significantly longer than access to elements of the matrices discussed in the previous
sections.

Figure 9.1 shows how the access time to a matrix element depends on the number
N of elements already in the container. The access time depends on the kind of
computer, the operating system, and the compiler and its settings. The measurements
were carried out using a 233 MHz Pentium PC, the egcs-1.0.2 C++-Compiler and
the Linux operating system.

The dot sequences show the trend. The round dots of nearly constant access time
apply to the implementation of the sparseMatrix class with a HMap container; the
ascending sequence of square dots shows the linear dependency of the access time
from the logarithm of the number N of already stored elements of the sorted map
container of the STL.

Figure 9.1: Access times for elements of a sparse matrix.


